Chapter 4

Motion In two & three
dimensions



4.2 Position and Displacement

* The position of a particle can be described
by a position vector, with respect to a
reference origin.

T=xi+yj+zk

Displacement

* The displacement of a particle is the change
of the position vector during a certain time.

A7 = (X1 + yo) + k) — (xg1 + y1) + z;k)

A7 = (x, — x)i + (v, — ¥ + (7, — 2k,



Example: two-dimensional motion

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time 1 (seconds) are given by

x=—0312+ 72+ 28 (4-5)
and y =0.22¢7 — 9.1 + 30. (4-6)

(a) Atr=15s,what is the rabbit’s position vector 7 in unit-
vector notation and in magnitude-angle notation?

KEY IDEA

The x and y coordinates of the rabbit’s position, as given by
Eqgs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector 7.

Calculations: We can write
(1) = x(01 + y(0)). (4-7)
(We write 7(f) rather than 7 because the components are

functions of ¢, and thus 7 is also.)
Attt = 15 s, the scalar components are

x = (—031)(15)% + (7.2)(15) + 28 = 66 m
and y = (0.22)(15)% — (9.1)(15) + 30 = =57 m,

SO 7 = (66 m)i — (57 m)], (Answer)

which is drawn in Fig. 4-2a.To get the magnitude and angle
of 7, we use Eq. 3-6:

r=Vaxr+y?=V(66m) + (=57 m)?
=87 m, (Answer)

—57
and 0 = tan~! % = tan_i( 66 Hrln ) = —41°.  (Answer)
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4.3 Average Velocity and Instantaneous Velocity

If a particle moves through a displacement of Dr Iin
At time, then the average velocity Is:

In the limit that the At time shrinks to a single point in time,
the average velocity is approaches instantaneous velocity.
This velocity is the derivative of displacement with respect

to time.




Example: two-dimensional velocity

For the rabbit in the preceding Sample Problem, find the ve-
locity V at time r = 15's.

KEY IDEA

We can find v by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the v, part of Eq. 4-12 to
Eq.4-5.we find the x component of ¥ to be

dx d .
== (=031 + 7.2t + 28)
= —0.62r + 7.2. (4-13)

At t = 15 s, this gives v, = —2.1 m/s. Similarly, applying the
v, part of Eq. 4-12 to Eq.4-6, we find

dvy d
= —— = —(0.22¢2 — 9.1t + 30
Yy dt dt ( )
=044t — 9.1. (4-14)

At 1= 1355, this gives vy = —2.5 m/s. Equation 4-11 then
yields

V= (=21m/s)i + (=2.5m/s)j, (Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at = 15 s.

v=ViZ+vi=V(-21mhk) + (—2.5m/s)

= 33m/s (Answer)
v —25m/s
d =tan"! ==t —1(7)
an g an v, an —2.1m/s
=tan"'1.19 = —130°. (Answer)

Check: Is the angle —130° or —130° + 180° = 50°?
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4.4 Average and Instantaneous Accelerations

* Following the same definition as in average velocity,

average change in velocity
acceleration ~  time interval
L V-7, AV
Agye = = .
e At At

 If we shrink At to zero, then the average acceleration value
approaches to the instant acceleration value, which is the
derivative of velocity with respect to time:

= axi + a},j + azﬁ



4.4 Two-dimensional rabbit run ...acceleration problem

For the rabbit in the preceding two Sample Problems, find
the acceleration @ at time 1 = 15 s.

KEY IDEA

We can find @ by taking derivatives of the rabbit’s velocity

< components.

dv,
dt

a, =

d
= E(—O.tﬂr +7.2) = —0.62 m/s%

Similarly, applying the a, part of Eq. 4-18 to Eq. 4-14 yields
the y component as

_ dv,

d
< ay=—r=— (0441 = 9.1) = 0.44 /s>

7 = (—0.62m/s?)i + (044 m/s?)j. (Answer)

c a=Va:+a=V(-062m/s?) + (0.44 m/s>)?

= (.76 m/s’. (Answer)
For the angle we have
a 0.44 m/s?
= t —1 _'U — t —l(—) = D-
6 =tan™" -~ =t e e

However, this angle, which is the one displayed on a calcula-

tor, indicates that @ is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that @ must
be directed to the left and upward. To find the other angle
that has the same tangent as —35° but is not displayed on a

calculator, we add 180°:
—35% + 180° = 145°. (Answer)

This is consistent with the components of @ because it gives
a vector that is to the left and upward. Note that @ has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant.
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4.5 Projectile motion

A particle moves in a vertical plane, with some initial velocity
vy; the only acceleration is the free fall acceleration, g,
directed vertically downward.

Examples in sports:
Tennis

Baseball

Football

Lacrosse
Racqguetball




4.5 Projectile motion

» Motion under the influence of gravity near Earth’s
surface has essentially constant acceleration of
magnitude g = 9.80 m/s?, and whose direction is
downward.

— Such motion is called projectile motion.
- Equations for projectile motion,

in a coordinate system with y
axis vertically upward:

« Horizontal and vertical
motions are independent:

Vertical spacing is
the same, showing

B hat -tical and
B bt
....are independent.
V =V _—(Qt
y y0 g
X=X, +V,l

Y=Y, +V,t—30t°

Animations:


http://www.physicsclassroom.com/mmedia/

# In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that 1s, neither motion affects the other.

—

The initial velocity of the projectile is: | Yo = Yorl + Voul-

Here, | vo. = wcosf, and vy, = vysin 6,

) Vertical motion + Horizontal motion » Projectile motion
__——This vertical motion plus -
L . . . ___.,-""F
_ this horizontal motion o
- . S : o =" Launch velocity

| produces this projectile motion. — i
Yos| Vertical velocity Yoy :

‘ , Ehl Launch angle
_'\_,-J _'._a'l L x __-':TL:: A
0 0 Yo 0 Vox

Launch Launch




4.5 Projectile motion

* The trajectory of a projectile motion Is a parabola,
unless the object has no horizontal component of
motion in which case it is simply free fall.

 Horizontal motion is unchanged, + Equation for the trajectory:
while vertical motion undergoes
downward acceleration:
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4.6: Projectile motion analyzed

Horizontal Vertical
Motion: Motion;
acceleration acceleration
=0 =g

V= Y = Vgl — %L%’-' ’
X — Xg = Vl. = (v sin Op)t — 5812,
X —Xp~= [l’.[]. COSs I'_r'_}.[].]r. vy = Vg sin 6y — gt

]
ran

"J u
vy = (vgsin 6p)” — 2g(y — vg)-

l Eliminate time, t;

~
(g'\' -

v = (tan 6,)x — 2
. 0, 2( \’“ COS ()I_):);




4.6: Projectile motion analyzed

CASE 1: Horizontally launched
projectiles (6, = 0°)
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4.6: Horizontal Range (special case)

The horizontal range of a projectile is the
horizontal distance when it returns to its
launching height

' -

The distance equations in the x- and y- directions -
respectively: v
R = (vycos 6y)t b R 1
: I
0 = (vgsin 6yt — 581°. o &
750‘(‘.‘
1004/ o
[ 60 AN\
Eliminating t 2vj I
iminating t: _ ~ = 5y
9t R = sinfpcos by T ool [as \—
40 - ’ 300 7
Vi . A L
R |= —sin 26,. ol N\
([E’ 0 50 100 150 200 250 300

x (m)

The horizontal range R 1s maximum for a launch angle of 45°.

Trajectories Summary:



http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html
http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html
http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html

Example: projectile motion

In Fig. 4-14, a rescue plane flies at 198 km/h (= 55.0 m/s) and
constant height 2 = 500 m toward a point directly over a
victim, where a rescue capsule is to land.

(a) What should be the angle ¢ of the pilot’s line of sight to
the victim when the capsule release is made?

Fig. 4-14 A plane drops a rescue capsule while moving at con-
stant velocity in level flight. While falling, the capsule remains un-
der the plane.

(a) What should be the angle ¢ of the pilot’s line of sight to
the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizontal
and vertical motions can be considered separately (we need
not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14, we see that ¢ is given by

x
= tan ! —,
¢ h

where x is the horizontal coordinate of the victim (and of

the capsule when it hits the water) and 7 = 500 m. We
should be able to find x

x — xg = (vycos fp)t.

Here we know that x; = 0 because the origin is placed at
the point of release. Because the capsule is released and
not shot from the plane, its initial velocity v, is equal to
the plane’s velocity. Thus, we know also that the initial ve-
locity has magnitude vy =55.0 m/s and angle #, = 0°
(measured relative to the positive direction of the x axis).
However, we do not know the time ¢ the capsule takes to
move from the plane to the victim.

To find r, we next consider the vertical motion and
specifically Eq. 4-22:

vy — yo = (vpsin Gp)t — %g-*z- (4-29)

Here the vertical displacement y — y, of the capsule is
—500 m (the negative value indicates that the capsule
moves downward). So,

=500 m = (55.0 m/s)(sin 0°)¢ — %(9.8 m/s?)r2. (4-30)
Solving for ¢, we find # = 10.1 s. Using that value in Eq. 4-28
yields

x — 0= (55.0 m/s)(cos 0°)(10.1 s), (4-31)
or x = 5555 m.
Then Eq. 4-27 gives us

535.5
¢ = tan~! Wrrlln = 48.0°. (Answer)



Example: projectile motion (same problem)

Fig. 4-14 A plane drops a rescue capsule while moving at con-
stant velocity in level flight. While falling, the capsule remains un-
der the plane.

(b) As the capsule reaches the water, what is its velocity V in
unit-vector notation and in magnitude-angle notation?

KEY IDEAS

(1) The horizontal and vertical components of the capsule’s
velocity are independent. (2) Component v, does not
change from its initial value vy, = v, cos #, because there is
no horizontal acceleration. (3) Component v, changes from
its initial value v, = vysin 6, because there is a vertical
acceleration.

Calculations: When the capsule reaches the water,

vy = vgcos fy = (55.0 m/s)(cos 0°) = 55.0 m/s.
Using Eq. 4-23 and the capsule’s time of fall 1 = 10.1 s, we

aleny find that when the cansule reache<s the water

y = Vosin 6y — gt
= (55.0 m/s)(sin 0°) — (9.8 m/s?)(10.1 s)
= —99.0 m/s.

Thus, at the water

¥V = (55.0m/s)i — (99.0m/s)j.  (Answer)

Using Eq. 3-6 as a guide, we find that the magnitude and the
angle of V are

v=113m/s and 6= —609°. (Answer)



4.7 Uniform Circular Motion

The speed of
the particle is
constant

Uniform

circular
motion

A particle
travels
around a
circle/circular
arc




4.7 Uniform Circular Motion

As the direction of the velocity of the particle
changes, there is an acceleration!!!

CENTRIPETAL (center-seeking)

ACCELERATION
12
a = T (centripetal acceleration),

The acceleration vector
always points toward the
center.

Here v Is the speed of the

=1

particle and r is the radius A
of the circle. / \1--{,—
/

The velocity \;

vector is always
tangent to the path.



4.7: Centripetal acceleration, proof of a = v?/r ’

dt dt

vV, =-Vvsing, vV, =-V cosé@
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Example: top gun pilots

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure In the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of ¥, = (4001 + 500j) m/s and 24.0 s later leaves the

w

turn with a velocity of V. = (—400i — 500j) m/s? -

Calculations:

Because we do not know radius R, let’s solve for R
from the period equation for R and substitute into the
acceleration eqn.

2V
T

{a =

Speed v here is the (constant) magnitude of
the velocity during the turning.

v = V(400 mfs)? + (500 m/s)? = 640.31 m/s.

To find the period T of the motion, first note that the

final velocity is the reverse of the initial velocity. This
means the aircraft leaves on the opposite side of the
circle from the initial point and must have completed

half a circle in the given 24.0's.

We assume the turn is made with uniform circular
motion.

Then the pilot’s acceleration is centripetal and has
magnitude a given by a =V2/R.

Also, the time required to complete a full circle
is the period given by T =21TRIV

Thus a full circle would have taken T 48.0 s.
Substituting these values into our equation for a, we
find:

_ 2m(640.31 mfs)
; 48.0's

= 83.81 m/s’ =~ 8.6¢g.  (Answer)



4.8: Relative motion in 1-D

The velocity of a particle depends on the reference

frame of whoever is observing the velocity.

 Suppose Alex (A) is at the origin of frame A (as
in Fig. 4-18), watching car P (the “particle”)
speed past.

* Suppose Barbara (B) is at the origin of frame B,
and is driving along the highway at constant
speed, also watching car P. Suppose that they
both measure the position of the car at a given

moment. Then:
Xpa = Xpg T Xpa.

where Xp, IS the position of P as measured by
A. Consequently,

Vpga = Vpp i Via-
Also,

d d d
E('"m) = E("mﬂ T m (Vga)-

Since vg, is constant, the last term is zero and we have

Apa = Apg-

y
Frame A

Frame B
| o r
Vpa  PB
> X

T X
Xpy = Xpp + Xy

Fig. 4-18 Alex (frame A) and Barbara (frame
B) watch car P, as both B and P move at different
velocities along the common x axis of the two
frames. At the instant shown, x, 1s the coordi-
nate of B in the A frame. Also, P is at coordinate
Xpp1n the B frame and coordinate xpy = xpp +
Xp4 In the A frame.



Example: relative motion 1-D

In Fig. 4-18, suppose that Barbara’s velocity relative to Alex
is a constant vy, = 52 km/h and car P is moving in the nega-

tive direction of the x axis.

¥ y
Frame A Frame B

- Qr Fig. 4-18

—
Viea XPR
P> : x
| | x
xpa Xpjg = Xpp +Xpg
(a) If Alex measures a constant vpy = —78 km/h for car P,

what velocity vpp will Barbara measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame of
reference B to Barbara. Because the frames move at constant
velocity relative to each other along one axis, we can use
Eq.4-41 (vpy = vpp + vps) torelate vpg to vp, and vp,.

Calculation: We find
=78 km/h = vpy + 52 km/h.
Thus. vpg = —130 km/h. (Answer)

Comment: If car P were connected to Barbara’s car by a
cord wound on a spool, the cord would be unwinding at
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus rela-
tive to the ground) in time ¢ = 10 s at constant acceleration,
what is its acceleration ap4 relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we
must use the car’s velocities relative to Alex. Because the

acceleration is constant, we can use Eq. 2-11 (v = vy + at) to
relate the acceleration to the initial and final velocities of P.

Calculation: The initial velocity of P relative to Alex is
vpy = — 78 km/h and the final velocity is 0. Thus, the acceler-
ation relative to Alex is

P v—vyy 00— (=78km/h) 1m/s
H ( 10s 3.6 km/h
= 2.2 m/s. (Answer)

(c) What is the acceleration apg of car P relative to Barbara
during the braking?

KEY IDEA

To calculate the acceleration of car P relative to Barbara, we
must use the car’s velocities relative to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vpp = —130 km/h). The final velocity of
P relative to Barbara is —52 km/h (this is the velocity of the
stopped car relative to the moving Barbara). Thus,

- v—vyg  —32km/h — (—130km/h) 1m/s
" ( 10s 3.6 km/h
= 2.2 m/s?. (Answer)




4.9: Relative motion in 2-D

A and B, the two observers, are watching P, the moving particle, from their
origins of reference. B moves at a constant velocity with respect to A, while the
corresponding axes of the two frames remain parallel; rp, refers to the position
of P as observed by A, and so on. From the situation, it is concluded:

!i'_'.r

Tpp

/

—

VRA

Frame B

Frame A

Fig. 4-19 Frame B has the constant two-

dimensional velocity vV, relative to frame
A. The position vector of B relative to A is
T pa. The position vectors of particle P are

T p4 relative to A and 7 pp relative to B.

Fpa = Tpg + Tpa

—

Vpa = Vpg T Vg
HPA:EFB

Relative Velocity Examples:



http://hyperphysics.phy-astr.gsu.edu/hbase/relmot.html
http://hyperphysics.phy-astr.gsu.edu/hbase/relmot.html
http://hyperphysics.phy-astr.gsu.edu/hbase/relmot.html

Example: relative motion, 2-D airplanes

In Fig. 4-20a, a plane moves due east while the pilot points
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity vV py relative
to the wind, with an airspeed (speed relative to the wind)
of 215 km/h, directed at angle # south of east. The wind
has velocity Vg relative to the ground with speed 65.0
km/h, directed 20.0° east of north. What is the magnitude of
the velocity Vpg of the plane relative to the ground, and
what is 6?

N This is the plane's actual
direction of travel.

—

\ 3 Vpg >
E
AN o N
This is the plane's = 20%,
. . ¥ Vi
orientation. vew ne

This is the wind
direction.

(a)

b VpG 5
-
Vpw Vi
X

The actual direction

is the vector sum of

the other two vectors
(head-to-tail arrangement).

()
Fig. 4-20 A plane flying in a wind.

KEY IDEAS

The situation is like the one in Fig. 4-19. Here the moving par-
ticle P is the plane, frame A is attached to the ground (call it
('), and frame B is “attached™ to the wind (call it W). We need
a vector diagram like Fig. 4-19 but with three velocity vectors.

Calculations: First we construct a sentence that relates the
three vectors shown in Fig. 4-205b:

velocity of plane _ velocity of plane velocity of wind
relative to ground ~ relative towind = relative to ground.
(PG) (PW) (WG)

This relation 1s written in vector notation as
Vpg = Vpw + Vwe- (4-46)

We need to resolve the vectors into components on the co-
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by
axis. For the y components, we find

VPGy = Vewy T VWGy
or 0= —(215 km/h)sin # + (65.0 km/h)(cos 20.07).

Solving for # gives us

Similarly, for the x components we find

VrGx = Vewx T VWG
Here, because Vg is parallel to the x axis, the component
Vpi.x 1S equal to the magnitude vpg. Substituting this nota-
tion and the value 6 = 16.5°, we find
vpe = (215 km/h)(cos 16.57) + (65.0 km/h)(sin 20.0%)
= 228 km/h. (Answer)



